Influence of Dissolved Organic Carbon Molecular Weight and Structure on Copper Complexation

Shawn P. McElmurry¹, Thomas C. Voice² and David T. Long³

¹ Wayne State University
Department of Civil & Environmental Engineering

² Michigan State University
Department of Civil & Environmental Engineering

³ Michigan State University
Department of Geological Sciences

Dissolved Organic Carbon

Organic carbon that passes through 0.45µm pore size filter

(Sutton and Sposito, 2006)
Determine which MW fraction of DOC preferentially complexes Cu?

- Shafer et al. (2004) ES&T
- deZarnuk et al. (2007) Chemosphere

Identify factors responsible for Cu-DOC complexation.

Ho: Cu complexation increases in LMW DOC with oxygen functional groups

Ho: Aromatic moieties in DOC provide strong Cu-binding sites

Standardized Humic Substances with known molecular structure

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>N</th>
<th>S</th>
<th>P</th>
<th>Aromaticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suwannee River HA</td>
<td>52.63</td>
<td>4.28</td>
<td>42.04</td>
<td>1.17</td>
<td>0.54</td>
<td>0.013</td>
<td>31</td>
</tr>
<tr>
<td>Suwannee River FA</td>
<td>52.34</td>
<td>4.36</td>
<td>42.98</td>
<td>0.67</td>
<td>0.46</td>
<td>0.004</td>
<td>22</td>
</tr>
<tr>
<td>Suwannee River NOM</td>
<td>52.47</td>
<td>4.19</td>
<td>42.69</td>
<td>1.1</td>
<td>0.65</td>
<td>0.02</td>
<td>23</td>
</tr>
<tr>
<td>Nordic Reservoir NOM</td>
<td>53.17</td>
<td>5.67</td>
<td>nd</td>
<td>1.1</td>
<td>nd</td>
<td>nd</td>
<td>19</td>
</tr>
<tr>
<td>Aldrich HA</td>
<td>68.98</td>
<td>5.26</td>
<td>43.45</td>
<td>0.74</td>
<td>4.24</td>
<td><0.05</td>
<td>26</td>
</tr>
</tbody>
</table>
Solid Phase Extraction

#### Cartridge ID	Cartridge Type	SPE Media	Retention Mechanisms	Molecular Weight Cutoff
Anion-F | BioRad AG MP-1 | Quaternary ammonium - styrene divinylbenzene copolymer (fluoride counterion) | Anion Exchange | none
Anion-1kDa | BioRad AG 1 X8 | Quaternary ammonium - styrene divinylbenzene copolymer (fluoride counterion) | Anion Exchange | 1kDa
Cation | BioRad Chelex 100 | Iminodiacetic acid exchange - styrene divinylbenzene copolymer | Cation Exchange | none

Retention Mechanisms

1. **Trace metal and carbon clean**
2. **Molecular weight fraction**
3. **No chemical treatments altered both DOC and trace metal complexation**
4. **Simultaneous quantification** of DOC and Cu-DOC complexation

Ligand Size

\[LS = \frac{M_F - M_X}{M_X} \]

- \(M_F \) – metal retained by Anion-F cartridge
- \(M_X \) – metal retained by Anion-1kD cartridge

MW Binding Site Density

\[MW BSD = \frac{M_F - M_X}{C_F - C_X} \cdot \frac{C_X}{M_X} \]

- \(M_F \) – metal retained by Anion-F cartridge
- \(M_X \) – metal retained by Anion-1kD cartridge
- \(C_F \) – organic carbon retained by Anion-F cartridge
- \(C_X \) – organic carbon retained by Anion-1kD cartridge
Cu is preferentially complexed by **HMW** fractions of DOC

\[\text{MW BSD ratio} = 0.3 (\%\text{Aro}) - 2.7 (\%\text{O}) + 57.6 \quad (r^2 = 0.99) \]
The **strength** of Cu-DOC complexation increases with aromatic structure.

Nordic Reservoir NOM (●), Suwannee River FA (● Suwannee River HA (●), and Suwannee R NOM (●), and Aldrich HA (○).

Cu-DOC complexation related to molecular structure:

1. Cu is preferentially complexed by **HMW** DOC

2. Complexation with **HMW** DOC increases with **aromatic** structure

3. Complexation with **LMW** DOC increases with **oxygen** functional groups

4. **Aromatic** moieties provide **strong** Cu-binding sites
Thank You

Shawn P. McElmurry, Ph.D.
Assistant Professor
Department of Civil & Environmental Engineering
Wayne State University
Detroit, MI 48202
Office: 313-577-3876
s.mcelmurry@wayne.edu