BE 1100
Introduction to Engineering
Fall 2002

INSTRUCTOR: Carol J. Miller, Ph.D., P.E.
2158 Engineering Bldg.
577-3876
cmiller@ce.eng.wayne.edu

TEACHING ASST: Selim Baradan; 2005 MEB; 993-4569;
sbaradan@ce.eng.wayne.edu

OFFICE HOURS: Miller T,Th 11:00 – 12:00; W 1:00 – 2:00
Baradan W 11-12, Th 2-4
Office hours are flexible and can be arranged to suit your
needs if you call, email, or set something up after class.

TEXTBOOK: Holtzapple, M.T. and Reece, W.D., Foundations of
Norman, D. A., The Design of Everyday Things;
Doubleday/Currency, 1990 (recommended)

OBJECTIVES: This course provides an introduction to the profession of
engineering, tools for engineering analysis and design, and
basic engineering design concepts. Students receive hands-
on computer laboratory and project experience, become
familiar with various engineering disciplines, learn teamwork,
problem solving, and communications skills, and acquire
skills in computer tools including e-mail, MS Office,
MATLAB, and MathCad. More specifically, the educational
objectives of this course are to enable the student to:

1. Understand fundamental engineering
 methods/procedures and develop skills in their use.
2. Develop written and oral communication skills.
3. Develop skills in the use of software packages that have
 wide use in engineering.
4. Plan and successfully execute basic engineering team
 projects.
5. Understand the role of the engineering profession in the
 21st century.
6. Be able to utilize engineering software tools in everyday
 engineering communication.
Co- or Pre-Requisites: MAT 1800, ENG 1020; Student should be Freshman or Sophomore

Homework: There will be several homework assignments given during lecture, as well as in the laboratory. Homework is required to be submitted on time. Late homework will not be accepted and will not be graded.

Projects: There will be one class project that will introduce the student to the concept of experimental techniques and one class project devoted to engineering design. Students will be expected to develop their team skills in approaching these projects, complete a written report on the project and present their project report to the entire class.

Grading: Grades will be computed based on the following:

- Homework – 25%
- Term Exams – 25%
- Final Exam – 25%
- Class Projects – 25%

Exams: The term exams will be based on the reading assignments, lecture material, laboratory material, and class projects. The final exam will be cumulative and will be held on Tuesday, December 17th, 2002 from 4:30 – 6:30 PM.

Policies:

1. Copying of computer-aided laboratory problems is strictly prohibited and violation will result in a course grade F. However, discussion of lecture materials and homework is encouraged. Students are encouraged to visit the instructor during the assigned office hours. Cheating in quizzes and exams will also result in a course grade F.

2. No make-up examination will be allowed. Very special circumstances will be considered but the instructor should be notified as early as possible.

3. Class drop forms will not be signed after the fifth week (October 7, 2002 is the last day).

4. Deferred and incomplete grades will only be granted to students with legitimate medical or other unforeseen excuse.
Student Conduct:

It is the responsibility of each student to adhere to the principles of academic integrity. Academic integrity means that a student is honest with him/herself, fellow students, instructors, and the University in matters concerning his or her educational endeavors. Thus, a student should not falsely claim the work of another as his/her own, or misrepresent him/herself so that the measures of his/her academic performance do not reflect his/her own work or personal knowledge. In this regard, cheating will not be tolerated. Cheating includes (but is not limited to) any communication (written or oral) during examinations and sharing of work, such as using the same models or computer programs or copying work. All homework and projects must be an individual effort unless specifically noted. **STUDENTS WHO CHEAT ON ANY ASSIGNMENT OR DURING ANY EXAMINATION WILL BE ASSIGNED A FAILING GRADE FOR THE COURSE.** Therefore avoid all appearance of improper behavior! Students who witness cheating should report the incident to the instructor as soon as possible. Students are also welcome to discuss any concerns related to cheating with the instructor or Dr. M. Usmen, Chair of Civil and Environmental Engineering.

Educational Accessibility Services:

If you feel that you may need an accommodation based on the impact of a disability, please feel free to contact me privately to discuss your specific needs. Additionally, the Office of Educational Accessibility Services (EAS) coordinates reasonable accommodations for students with documented disabilities. The Office is located in the Student Center Building, Room 583, Phone: 313-577-1851 (Voice)/577-3365 (TTY).

Policy on Classroom Attendance:

All students are expected to attend all lectures, quizzes, and examinations with enthusiasm. Although classroom attendance does not mathematically contribute to the final course grade, active class participation is expected of all students and may help to boost up the course grade in those “borderline” cases between failing and passing.

It is recognized that students may be required to miss classes on occasion as a result of their participation in approved University activities. Examples of such activities include formal participation on University sports teams, debate teams, and performing arts groups. These activities are generally directed by a University official, such as a coach, and usually have a set schedule of events.

Students participating in approved University activities should consult with instructors prior to registration, but no later than the end of the second week after the start of classes, to determine the class attendance policy. At this time, the student should provide the instructor with a schedule of planned absences, preferably signed by the University official directing the activity (e.g., Athletic or Program Director or his/her designee), in order to allow the instructor to evaluate and advise the student on the possible impact of the planned absences. In this case, the instructor will consider absences due to participation in approved University activities, as outlined above, to be excused absences, on par with those due to other unavoidable circumstances such as illness and work-related travel.
It is the student's responsibility to learn the course material. When classes are missed, for whatever reason, it is the obligation of the students to obtain copies of the class materials and students are responsible for all materials covered in the lectures. An excused absence does not excuse the student from completing assigned work, including exams.

Final Exam

The Final Examination is scheduled for Tuesday, December 17 at 4:30 PM. Students who have three or more exams scheduled for that day have the right to request relief. Please consult the instructor as soon as possible if that is the case.
Lecture Sessions

<table>
<thead>
<tr>
<th>Session</th>
<th>Topic</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Introduction; Course Objectives</td>
<td>Pre-test; Chapter 1</td>
</tr>
<tr>
<td></td>
<td>Engineering Disciplines; Engineering Careers</td>
<td>Internet Review</td>
</tr>
<tr>
<td>Week 2</td>
<td>Project Discussion/Teams</td>
<td>Project Information</td>
</tr>
<tr>
<td></td>
<td>Engineering Ethics</td>
<td>Chapter 2; VIDEO</td>
</tr>
<tr>
<td>Week 3</td>
<td>Engineering Ethics</td>
<td>Appendix B</td>
</tr>
<tr>
<td></td>
<td>Problem Solving</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Week 4</td>
<td>Engineering Design</td>
<td>Chapter 5; Design of Everyday Things</td>
</tr>
<tr>
<td>Week 5</td>
<td>Engineering Design</td>
<td>Design of Everyday Things</td>
</tr>
<tr>
<td></td>
<td>Team Project / Team Work</td>
<td>Group Work</td>
</tr>
<tr>
<td>Week 6</td>
<td>Design Examples – Building BIG</td>
<td>Video – Building BIG</td>
</tr>
<tr>
<td></td>
<td>Design Examples</td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>Numbers in Engineering Applications</td>
<td>Chapter 7</td>
</tr>
<tr>
<td></td>
<td>Presenting Numbers – Tables and Graphs</td>
<td>Chapter 8</td>
</tr>
<tr>
<td>Week 8</td>
<td>Statistics</td>
<td>Chapter 9</td>
</tr>
<tr>
<td></td>
<td>Newton’s Laws</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>Week 9</td>
<td>Newton’s Laws</td>
<td>Chapter 10</td>
</tr>
<tr>
<td></td>
<td>Intro to Thermo</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>Week 10</td>
<td>Intro to Thermo</td>
<td>Chapter 11</td>
</tr>
<tr>
<td></td>
<td>Engineering Experiments</td>
<td>Lab</td>
</tr>
<tr>
<td></td>
<td>Laboratory Review</td>
<td>Lab Write-up</td>
</tr>
<tr>
<td>Week 11</td>
<td>Engineering for Accessibility</td>
<td>Professor Erlandson</td>
</tr>
<tr>
<td></td>
<td>Engineering for Accessibility</td>
<td>Professor Erlandson, ECE</td>
</tr>
<tr>
<td>Week 12</td>
<td>Rate Processes</td>
<td>Chapter 12</td>
</tr>
<tr>
<td>Week 13</td>
<td>Project Presentations</td>
<td></td>
</tr>
<tr>
<td>Week 14</td>
<td>Engineering Societies; Student Chapters</td>
<td>Review</td>
</tr>
</tbody>
</table>

NOTE: THE LAB SYLLABUS WILL BE PROVIDED IN THE LAB SECTION, AND IS IN ADDITION TO THIS!!!